

Available Online at

http://www.ijcpa.in

International Journal of CHEMICAL AND PHARMACEUTICAL ANALYSIS

eISSN: 2348-0726 ; pISSN : 2395-2466

January-March 2016

Review Article

Volume-3

Issue-2

Article ID: 871

ELECTRODEPOSITION OF TERNARY THIN FILMS: A REVIEW

S.M. HO

Centre for Green Chemistry and Applied Chemistry, Faculty of Science, Technology, Engineering and Mathematics, INTI International University, Putra Nilai, 71800, Negeri Sembilan, Malaysia.

*Corresponding Author: Email: soonmin.ho@newinti.edu.my

Received: 15 October 2015 / Revised: 14 December 2015 / Accepted: 19 January 2015 / Available online : 31 March 2016

ABSTRACT

This review paper summarized the preparation of ternary chalcogenide thin films using electrodeposition method. Electro deposition method is emerged as one of the most preferred deposition technique to produce large area thin films by many researchers. Many efforts are currently directly to generation of binary, ternary and quaternary thin films based on metal sulfide, selenide and telluride using this method.

Keywords -Electrodeposition; Thin films; Chalcogenide; Solar cells; Semiconductor.

1. INTRODUCTION

Thin films are considered as the best candidate for applications in optical and photosensitive devices, solar cells and solar selective decorative coatings. Recently, many research groups from all corners of the world have an increasing interest in the investigation and development of ternary chalcogenide thin films. These thin films have been grown by many deposition techniques as listed in Table 1¹⁻¹⁶. Currently, electro deposition method is considered as one of the most preferred and cheaper deposition method to produce large area thin films¹⁷. Furthermore, other advantages include simple¹⁸, low cost instrumentation¹⁹, high grow rate, high efficiency of material utilization²⁰, uniform deposition over substrates, easy control of growth parameters²¹, it does not require vacuum chamber²² and good control over film composition²³.

In this review paper, preparation of ternary thin films include metal sulfide, selenide and telluride by using electrodeposition method will be discussed. The obtained experimental findings will be reported also.

2. LITERATURE SURVEY

Mercury cadmium telluride thin films have been deposited on nickel substrate by Kumaresanet al^{24} using CdCl₂, HgCl₂ and TeO₂. They observe that the cadmium rich content was produced at higher potential. These films display a cauliflower morphology and larger grain size if compared to mercury rich thin films which deposited at lower potential.

The CdSO₄, InCl₃ and TeO₂ were used to prepare ternary Cd-In-Te films onto SnO₂: F coated glass substrate by Kiran et al²⁵. In X-ray diffraction (XRD) analysis, these films display cubic structure with predominant (111) orientation. In optical properties investigations, band gap value was reduced from 1.2 to 1.1 eV as the deposition potential was increased from -0.5 to -0.54 V (SCE), indicating that the band gap changes with the deposition potential.

International Journal of Chemical & Pharmaceutical AnalysisJanuary-March 2016

Copper indium diselenide thin films have direct band gap characteristic, high optical absorption $coefficient^{26}$ and high long term stability. In the literature, there are many reports related to the CuInSe₂ films growth by electrodeposition technique onto various substrates such as Mo/soda lime glass²⁷, SnO₂-coated glass²⁸ and indium tin oxide coated glass^{29,30}. On the other hand, some researchers prepare CuInSe₂ thin films using various complexing agents such as citric acid³¹ and triethanolamine³² in their research.

CuInTe₂ thin films were prepared by Dixit et al^{33} using CuCl₂, InCl₃ and pre-reacted tellurium with nitric acid. In their experiment, acetronitrile was added into electrolytic bath and growth was done at the potentials of -0.35 V and -0.45 V with and without stirring. The films grown under stirring conditions are more oriented in the (112) direction as indicated in XRD patterns. Meanwhile, formation of uniformly covered nano flakes of 40-50 nm could be observed in the films as shown in SEM analysis.

Studies on zinc mercury telluride thin films were carried out by Mahalingamet al^{34} . Deposition of films was done using an electrolyte bath contained ZnSO₄, HgCl₂, and TeO₂ with the pH value varying between 2 and 4. They found that excessive amount of pure tellurium was deposited for the pH below 2.5. However, insufficient tellurium could be detected dissolved in the electrolytic bath when the pH greater than 4. On the other hand, the influence of bath composition also was studied by them. They claim that increased HgCl₂ concentration has resulted in high mercury content in the films. However, there was no change of mercury content in the films as the HgCl₂ concentration beyond 1mM. The electrical resistivity and the band gap were observed to reduce with increase in the mercury content in the films.

The electrodeposition of molybdenum sulphoselenide thin films on indium tin oxide (ITO) coated glass and stainless steel substrates have been reported by Anandet al³⁵. The colour of all the samples were dark grey to black in colour and were adherent to the substrates. These films were characterized by XRD for structural studies and the rhombohedral structure was confirmed.

Electrodeposited cadmium zinc telluride thin films which prepared on SnO_2 substrate have been investigated by Rekha³⁶. The films prepared at potential of -0.87V (saturated calomel electrode, SCE) have the cubic structure and uniformly covered with grains of one micron in size as shown in XRD and SEM results. Optical transmission spectra were recorded and the band gap was found about 1.6 eV.

Copper indium disulfide thin films show high absorption coefficient and direct band gap, so that, make them an excellent absorber for solar cells. CuInS₂ films were deposited on SnO₂/glass substrate from InCl₃, CuSO₄ and Na₂S₂O₃ as reported by Manfredyet al³⁷. A stoichiometric composition and good crystallinity were found for films prepared at potential of -1145 mV (SCE) according to Energy dispersive X-ray (EDX) and XRD results. Zhou et al³⁸ have reported that the preparation of CuInS₂ films on indium tin oxide glass substrate. The XRD analysis indicated that as-deposited CuInS₂ films are the major phase at deposition potential of -1000 mV SCE. However, the sample was found to be copper rich in annealed films. In the optical investigations, the band gap and carrier concentration were observed to be 1.43 eV and 4.2 X 10¹⁷ cm⁻³, respectively. Martinez et al³⁹ have been reported that CuInS₂ films were growth on a stainless steel substrate. They conclude that the samples were annealed in a nitrogen atmosphere in order to improve the polycrystallinity of films. Based on their results, the films show *n*-type characteristic as the electrolytic bath has the same concentration [Cu²⁺]=[In³⁺]. Meanwhile, for different concentrations of copper and indium ions, the films were of the *p*-type.

 Cu_4SnS_4 thin films have been prepared under various deposition conditions by Anuar and co-workers. The influence of different bath temperatures (25, 35, 45°C) and deposition periods (15, 30, 45 minutes) on the growth of these films was reported. The atomic force microscopy (AFM) measurement results indicated an increase in the film thickness as the deposition time was increased from 15 min (1269 nm) to 30 min (2016 nm). Furthermore, the AFM images indicated that higher bath temperature leads to larger crystal size⁴⁰. On the other hand, the films were deposited at various deposition potentials, ranging from -400 mV to -1000 mV versus Ag/AgCl in order to determine the optimum conditions. The films were observed to display direct transition in the visible spectrum with a band gap value of about 1.58 eV at -600 mV. Decreasing in deposition potential resulted in an increase in the size of the grains and caused in growth of spherical particles⁴¹. The influence of pH was studied in their experiments. The films showed good uniformity and exhibited higher absorbance value at pH 1.5⁴².

International Journal of Chemical & Pharmaceutical AnalysisJanuary-March 2016

Nowadays, researchers have successfully produced not only ternary thin films, but also quaternary films (Table 2) and binary (Table 3) films using various deposition methods for the applications in optoelectronic and solar cells. The physical and optical properties of thin films were discussed and analyzed in their reports.

Table 1: Ternary thin films prepared by various deposition

methods.		
Thin films	Deposition method	
$Cd_{0.6}Hg_{0.4}Se^1$	Chemical bath deposition	
Ag-In-S ²	Chemical bath deposition	
$CuInS_2^3$	Chemical bath deposition	
$Cu_2ZnS_2^4$	Chemical bath deposition	
$Ni_3Pb_2S_2^5$	Chemical bath deposition	
Cd-S-Se ⁶	Thermal evaporation	
Hg-Cd-Te ⁷	Thermal evaporation	
$Zn_xCd_{(1-x)}Te^8$	Thermal evaporation	
Pb-Te-Ag ⁹	Thermal evaporation	
Se-Ag-Te ¹⁰	Thermal evaporation	
$Ge_{19}Se_{81-x}Sb_x^{11}$	Thermal evaporation	
CuInS ₂ ¹²	Solvothermal reaction	
$Cd_{0.9}Zn_{0.1}Te^{13}$	Vacuum evaporation	
CuInSe ₂ ¹⁴	Hydrothermal method	
CuInS ₂ ¹⁵	Spray pyrolysis	
Cd-S-In ¹⁶	Spray pyrolysis	

Table 2: Quaternary thin films prepared by various

deposition methods.

Thin films
Cu ₂ ZnSnS ₄ ⁴³
MoBiGaSe ₅ ⁴⁴
$Ag_{1-x}Cu_xInS_2^{45}$
CuInSTe ⁴⁶
Ag-Zn-Sn-S ⁴⁷

3. CONCLUSION

Several reports on the electrodeposition of thin films from aqueous solutions have been published and discussed here. Experiment results show that the ternary thin films could be deposited onto various types of substrates and under different growth conditions. Lastly, electrodeposition technique has been selected in this work due to it is a simple process and without vacuum conditions compared with other deposition techniques.

4. ACKNOWLEDGEMENTS

INTI International University is gratefully acknowledged for the financial support of this work.

5. REFERENCES

- 1. Bhuse VM, Hankare PP, Sonandkar S, Mater. Chem. Phys, 2007, 101: 303-309.
- 2. Chang W, Wu C, Jeng M, Cheng K, Mater. Chem. Phys, 2010, 120: 307-312.
- 3. Bini S, Bindu K, Lakshmi M, Kartha CS, Vijayakumar KP, Kashiwaba Y, Abe T, Renewable Energy, 2000, 20: 405-413.
- 4. Uhuegbu CC, Babatunde EB, Am. J. Sci. Ind. Res., 2010, 1: 397-400.
- 5. Ho SM, Oriental J. Chem., 2014, 30: 1009-1012.

Table 3: Quaternary thin films prepared by various

deposition methods.		
	Thin films	
	$\frac{MnS_2^{48}}{CdSe^{49}}$ $\frac{CuS^{50}}{CuS^{50}}$	
	CdSe ⁴⁹	
	CuS ⁵⁰	
	$ \frac{Sb_2S_3^{51}}{ZnS^{52}} \\ \frac{In_2S_3^{53}}{ZnSe^{54}} \\ \frac{Starse}{Starse} \\ Star$	
	ZnS ⁵²	
	$In_2S_3^{53}$	
	ZnSe ⁵⁴	
	PbS ⁵⁵	
	$\frac{PbSe^{56}}{SnS_2^{57}}$ NiS ⁵⁸	
	SnS_2^{57}	
	NiS ⁵⁸	
	CdS ⁵⁹	
	FeS ⁶⁰	
	$\frac{{\operatorname{Bi}}_2{\operatorname{S}}_3{}^{61}}{{\operatorname{SnS}}^{62}}$	
	SnS ⁶²	
	NiSe ⁶³	
	MnS ⁶⁴	
	$Ni_4S_3^{65}$	
	Cu ₂ S ⁶⁶	

International Journal of Chemical & Pharmaceutical AnalysisJanuary-March 2016

- 6. Lalhriat Z, Pratima A, Mater. Chem. Phys, 2015, 162: 813-821.
- 7. Basharat M, Hannan MA, Shah NA, Ali A, Arif M, Maqsood A, Cryst, Res. Technol., 2007, 42: 817-821.
- 8. Khairnar UP, Behere SS, Pawar PH, J. Surf. Eng. Mater. Adv. Technol., 2011, 1: 51-55.
- 9. Manju B, Srashti G, Tripurari ST, Shikha V, Surya KT, Asokan K, Devesh KA, RSC Adv., 2015, 5: 25887-25895.
- 10. Madhu M, Rashmi C, Anju K, Srivastava KK, Prog. Nat Sci: Mater. Int., 2011, 21: 36-39.
- 11. Neha S, Sunanda S, Vineet S, Pankaj S, Mater. Chem. Phys, 2012, 136: 967-972.
- 12. Han S, Kong M, Guo Y, Wang M, Mater. Lett., 2009, 63: 1192-1194.
- 13. Sridharan M, Mekaladevi M, Narayandass SK, Mangalaraj D, Lee H, Cryst. Res. Technol., 2004, 39: 328-332.
- 14. Ramkumar J, Ananthakumar S, Babu SM, Sol. Energy. 2014, 106: 177-183.
- 15. Hussain KMA, Podder J, Saha DK, Ichimura M, Indian J. Pure & Appl. Phys., 2012, 50: 117-122.
- 16. Shadia JI, Hassan KJ, Riyad NAB, J. Lumin., 2013, 141: 27-32.
- 17. Thanikaikarasan S, Mahalingam T, Kathalingam A, Moon H, Kim YD, J. New Mater. Electrochem. Syst., 2010, 13: 29-33.
- 18. Mahalingam T, John VS, Ravi G, Sebastian PJ, Cryst. Res. Technol., 2002, 37: 329-339.
- 19. Bansal A, Rajaram P, Mater. Lett., 2005, 59: 3666-3671.
- 20. Cheng K, Meng J, Wang X, Huang Y, Liu J, Xue M, Du Z, Mater. Chem. Phys., 2015, 163: 24-29.
- 21. Mammadov MN, Aliyev AS, Elrouby M, Int. J. Thin films Sci. Technol., 2012, 1: 43-53.
- 22. Kashyout AEHB, Ahmed EZ, Meaz T, Nabil M, Amer M, Alexandria Eng. J., 2014, 53: 731-736.
- 23. Wilman S, Shigeru I, Akio K, Takashi H, Michio M, Electrochim. Acta, 2013, 88: 436-442.
- 24. Kumaresan R, Babu SM, Ramasamy P, J. Cryst. Growth, 1999, 198-199: 1165-1169.
- 25. Kiran J, Sharma RK, Kohli S, Sood KN, Rastogi AC, Curr. Appl. Phys., 2003, 3: 251-256.
- 26. Kashyout AE, Ahmed EZ, Meaz T, Nabil M, Amer M, Alexandria Eng. J., 2014, 53: 731-736.
- 27. Li J, Zhao X, Xia D, J. Wuhan U. Technol.-Mater. Sci., 2007, 22: 140-143.
- 28. Wellings JS, Samantilleke AP, Heavens SN, Warren P, Dharmadasa IM, Sol. Energy Mater. Sol. Cells, 2009, 93: 1518-1523.
- 29. Bouraiou A, Aida MS, Mosbah A, Attaf N, Braz. J. Phys., 2009, 39: 543-546.
- 30. Meglali O, Bouraiou A, Attaf N, Rev. Energies Renouvelables, 2008, 11: 19-24.
- 31. Bouabid K, Ihlal A, Manar A, Sdaq A, Outzourhit A, Ameziane EL, J. Phys. IV France, 2005, 123: 47-51.
- 32. Whang T, Hsieh M, Kao Y, Lee S, Appl. Surf. Sci., 2009, 255: 4600-4605.
- 33. Dixit P, Kavita D, Ashok KS, Vikas T, Poolla R, Int. J. Mater. Sci. Appl., 2014, 3: 1-5.
- 34. Mahalingam T, Kathalingam A, Velumani S, Lee S, Moon H, Kim Y, J. New Mater. Electrochem. Syst., 2007, 10: 21-25.
- 35. Anand TJS, Shariza S, Rosli ZM, Shaaban A, Sivarao, Said MR, Kamaruzaman J, Thiru S, World Appl. Sci. J., 2013, 21: 60-67.
- 36. Rekha GS, Indian J. Pure & Appl. Phys., 2010, 48: 133-135.
- 37. Manfredy L, Marquez OP, Marquez J, Lopez-Rivera SA, Martinez Y, Balladores Y, ARPN J. Sci. Technol., 2014, 4: 455-463.
- 38. Zhou H, Chen X, Adv. Mater. Res., 2013, 690-693: 1659-1663.
- 39. Martinez AM, Arriaga LG, Fernandez AM, Cano U, Mater. Chem. Phys., 2004, 88: 417-420.
- 40. Anuar K, Ho SM, Tan WT, Atan S, Kuang Z, Haron MJ, Saravanan N, Solid State Sci. Technol., 2009, 17: 226-237.
- 41. Anuar K, Ho SM, Tan WT, Atan S, Zulkefly K, Haron MJ, Saravanan N, Chiang Mai U. J. Nat. Sci., 2008, 7: 317-326.
- KassimA, Nagalingam S, Tee TW, Shariff AM, Kuang D, Haron MJ, Ho SM, An. U. Bucuresti –Chim., Anul XVIII, 2009, Vol I: 59-64.
- 43. Peng CY, Dhakal TP, Garner S, Cimo P, Lu S, Westgate CR, Thin Solid Films, 2014, 562: 574-577.
- 44. Patil SP, Mane RM, Kharade RR, Mali SS, Bhosale PN, Digest J. Nanomater. Biostructures, 2012, 7: 237-245.
- 45. Colantoni A, Longo L, Boubaker K, J. Mater., http://dx.doi.org/10.1155/2014/325271.

- 46. Bushra AH, Muthafar FA, Duaa AU, Al-Mustansiriyah J. Sci., 2011, 22: 211-221.
- 47. YehLY, Cheng KW, Thin Solid Films, 2014, 558: 289-293.
- 48. Anuar K, Abdullah AH, Ho SM, Saravanan N, Av. Quim, 2010, 5: 141-145.
- 49. Gopakumar N, Anjana P, Vidyadharan PP, J. Mater. Sci., 2010, 45: 6653-6656.
- 50. Anuar K, Ho SM, Tee WT, Lim KS, Saravanan N, Res. J. Appl. Sci. Eng. Technol. 2011, 3: 513-518.
- 51. Ezema FI, Ekwealor ABC, Asogwa PU, Ugwuoke PE, Chigbo C, Osuji RU, Turk. J. Phys., 2007, 31: 205-210.
- 52. Anuar K, Nani R, Ho SM, Int. J. Adv. Eng. Sci. technol., 2011, 7: 169-172.
- Asenjo B, Guilln C, Chaparro AM, Saucedo E, Bermudez V, Lincot D, Herrero J, Gutirrez MT, J. Phys. Chem. Solids, 2010, 71: 1629-1633.
- 54. Anuar K, Ho SM, Tan WT, Kelvin, Saravanan N, Eur. J. Appl. Sci., 2011, 3: 75-80.
- 55. Raniero L, Ferreira CL, Cruz LR, Pinto AL, Alves RMP, Physica B: Condensed Matter, 2010, 405: 1283-1286.
- 56. Anuar K, Ho SM, Saravanan N, Turk. J. Sci. Technol., 2011, 6: 17-23.
- 57. Li J, Zhang YC, Zhang M, Mater. Sci. Forum. 2011, 663-665: 104-107.
- 58. Anuar K, Ho SM, Tan WT, Ngai CF, Am. J. Appl. Sci., 2011, 8: 359-361.
- 59. Apolinar-Iribe A, Acosta-Enriquez MC, Quevedo-Lopez MA, Ramirez-Bon R, De-Leon A, Castillo SJ, Chalcogenide Lett., 2011, 8: 77-82.
- 60. Anuar K, Ho SM, Atan S, Saravanan N, Studia UBB. Chemia, 2010, 55: 5-11.
- 61. Ubale AU, Mater. Chem. Phys., 2010, 121: 555-560.
- 62. Anuar K, Ho SM, Atan S, Haron MJ, Res. J. Chem. Environ., 2011, 15: 45-48.
- 63. Hankare PP, Jadhav BV, Garadkar KM, Chate PA, Mulla IS, Delekar SD, J. Alloys Compd., 2010, 490: 228-231.
- 64. Anuar K, Ho SM, Int. J. Chem. Res.,, 2010, 1: 1-5.
- 65. Anuar K, Tan WT, Saravanan N, Ho SM, Bangladesh J. Sci. Ind. Res., 2011, 46: 243-246.
- 66. AnuarK, Ho SM, Lim KS, Saravanan N, Chalcogenide Lett., 2011, 8: 405-410.