

Available Online at

http://www.ijcpa.in

International Journal of CHEMICAL AND PHARMACEUTICAL ANALYSIS

October-December 2018

elSSN: 2348-0726 ; plSSN : 2395-2466

Research Article

DOI: http://dx.doi.org/10.21276/ijcpa

ArticleVolume-6Issue-1Article ID: 0005

METHOD DEVELOPMENT AND VALIDATION FOR DETERMINATION OF RAMIPRIL AND METOPROLOL SUCCINATE BY ZERO ORDER DERIVATIVES IN BULK AND MARKETED FORMULATION

Sitaram Atmaji Naik^{*1}, E.V. S. Subrahmanyam², Paramita Das³

¹Department of Quality Assurance, Srinivas College of Pharmacy, Valachil, Post-Farangipete, Manglore- 574143, Karnataka, India. ²HOD, Assistant Professor, Department of Quality Assurance, Srinivas College of Pharmacy, Valachil, Post-Farangipete, Manglore-574143, Karnataka, India.

³Assistant Professor, Department of Quality Assurance, Srinivas College of Pharmacy, Valachil, Post-Farangipete, Manglore-574143, Karnataka, India.

*Corresponding Author: Email: advaysitaramnaik@gmail.com

Received: 30 March 2018 / Revised: 24 April 2018 / Accepted: 20 August 2018 / Available online 31 December 2018

ABSTRACT

The proposed method involves zero order derivative spectroscopy method. A novel, simple and rapid UV Spectrophotometric determination method for simultaneous estimation of Ramipril (RAM) and Metoprolol Succinate (METO) was successfully developed and validated in bulk and pharmaceutical formulation. In this current work, simultaneous estimation of RAM and METO in methanol was performed by using UV spectroscopy. The zero-order derivative spectroscopy revealed that RAM had a λ max of 205 nm in methanol and METO had λ max of 275 nm respectively. The linearity was found in the range of 3-30 µg/ml for RAM and 20-200 µg/ml for METO. The R² value was found to be 0.9994 and slope y=0.0365 for RAM and R² = 0.9986 and slope y = 0.0054 for METO.

Keywords - Ramipril, Metoprolol Succinate, Zero order derivative method.

1. INTRODUCTION

Analytical methods development, identification, characterization of impurities and method validation play key role in the pharmaceutical's discovery, development, and manufacturing. Derivative spectrophotometry involves the conversion of a normal spectrum to its first, second or higher derivative spectrum. In the context of derivative Spectrophotometry, the normal absorption spectrum is referred to as the fundamental, zeroth order spectrum. The first derivative spectrum¹ of an absorption band is characterized by a maximum, a minimum and a cross-over point at the λ max of the absorption band.

Ramipril (RAM) is a prodrug for the major metabolite ramiprilat formed via ester hydrolysis, which is a highly active inhibitor of angiotensin-converting enzyme (ACE-I)². Atorvastatin (ATOR) calcium belongs to the category of statins, which inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (3-HMG CoA) reductase³, thus resulting in a decrease in intracellular cholesterol due to increased clearance of low density lipoproteins (LDL) cholesterol in plasma⁴. Although there have been many advances in the management of cardiovascular diseases (CVD) during the last several years, these are still the main cause for morbidity and mortality. The

International Journal of Chemical & Pharmaceutical AnalysisOctober-December 2018

pathophysiology of CVD reveals that renin angiotensin- aldosterone system (RAAS) and dyslipidemia play an important role in the genesis and progression of CVD risk that is endothelial dysfunction⁵. Ramipril may be used in the treatment of hypertension, congestive heart failure, nephropathy, and to reduce the rate of death, myocardial infarction, and stroke in individuals at high risk of cardiovascular events⁶.

Fig. 1: Structure of Ramipril

Metoprolol succinate is chemically (RS)-1-(Isopropylamino)-3-[4-(2 methoxyethyl)phenoxy]propan-2-ol succinate⁷, is a cardio selective β -blocker, used in the treatment of hypertension, angina pectoris, arrhythmia, myocardial infraction and heart failure⁸. It is official in IP⁹, BP¹⁰ and USP¹¹. Molecular formula C34H56N2O10, molecular weight 652.8, it is freely soluble in water, soluble in Methanol, sparingly soluble in alcohol and slightly soluble in isopropyl alcohol, bioavailability 50% for single dose and 70% for repeated administration, half-life 3-7 hours, a white, crystalline powder or colorless crystals^{12,13}.

Fig. 2: Structure of Metoprolol Succinate

2. MATERIALS AND METHODS

2.1 Material

The Ramipril and Metoprolol Succinate were purchased from Yarrow Chem Products Mumbai (INDIA). All other chemicals and reagents used were of analytical grade.

2.2 Apparatus and conditions

A double beam Shimadzu UV-1800 series spectrophotometer was used. Absorption and overlain spectra of both test and standard solutions were recorded over the wavelength range of 200-400nm using 1cm quartz cell at fast scanned speed and fixed slit width of 1.0nm. All weighing of ingredients was done on digital weighing balance.

2.3 Preparations of solutions

2.3.1 Ramipril standard stock solution: Accurately weighed 100mg of Ramipril was transferred into clean, dry 100 ml volumetric flask and dissolved with sufficient volume of Methanol. The volume was made up to 100 ml with Methanol to get concentration of 1000µg/ml (stock A). Further 10ml was withdrawn from stock A in 100ml volumetric flask and dissolved with sufficient volume of Methanol. The volume was made up to 100 ml with Methanol. The volume of 100µg/ml (stock B).

International Journal of Chemical & Pharmaceutical AnalysisOctober-December 2018

2.3.2 Working standard solution: Aliquots from standard solution were withdrawn in the volumes of 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7 and 3.0ml and transferred into different 10 ml volumetric flasks. The volumes were made up with Methanol to get concentrations ranging from 3, 6, 9, 12, 15, 18, 21, 24, 27 and 30µg/ml respectively.

2.3.3 Metoprolol Succinate standard stock solution: Accurately weighed 100mg of Metoprolol Succinate was transferred into clean, dry 100 ml volumetric flask and dissolved with sufficient volume of Methanol. The volume was made up to 100 ml with Methanol to get concentration of 1000µg/ml.

2.3.4 Working standard solution: Aliquots from standard solution were withdrawn in the volumes of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 ml and transferred into different 10 ml volumetric flasks. The volumes were made up with Methanol to get concentrations ranging from 20, 40, 60, 80, 100, 120, 140, 160,180 and 200µg/ml respectively.

2.3.5 Determination of λ max of Ramipril and construction of calibration curve in methanol (zero order derivative spectra): Wavelength scan was done from 200-400 nm by using 3-30µg/ml solution in double beam UV spectrophotometer Shimadzu UV-1800 series spectrophotometer to get λ max and absorbance of the standard solution were noted down.

2.3.6 Determination of \lambdamax of Metoprolol Succinate and construction of calibration curve in methanol (Zero order derivative spectra): Wavelength scan was done from 200-400 nm by using 20-200µg/ml solution in double beam UV spectrophotometer Shimadzu UV-1800 series spectrophotometer to get λ max and absorbance of the standard solution were noted down.

3. RESULTS AND DISCUSSION

3.1 λ max of Ramipril and calibration curve in methanol (zero order derivative spectra): The λ max of Ramipril was found out at 205nm (Figure 3) and linearity was in the range of 3-30µg/ml and R² value was found to be 0.994, slope Y=0.0365. The absorbance was found at 205nm is mentioned in (figure 4).

Fig. 3: Overlay of λ max of RAM (3-30µg/ml)

Fig. 4: Standard graph of RAM in methanol at 205nm

3.2 λ max of Metoprolol Succinate and calibration curve in methanol (zero order derivative spectra): The λ max of Metoprolol Succinate was found out at 275nm (Figure 5)and linearity was in the range of 20- 200µg/ml and R² value was found to be 0.9986 ,slope Y=0.0054.The absorbance was found at 275nm is mentioned in (figure 6).

Fig. 5: Overlay of λ max of METO (20-200µg/ml)

Fig. 6: Standard graph of METO in methanol at 275nm

3.3 Method Validation

The developed analytical method as per the ICH Q2 (R1) guideline it is suitable for the intended purpose with respect to various parameters such as specificity, linearity, range, accuracy, precision, limit of detection, limit of quantification, robustness, system suitability^{14, 15}.

3.3.1 Sensitivity

Absorbance of standard solutions of Ramipril and Metoprolol Succinate was measured at 205nm and 275nm respectively.

Conc.	Ramipril		Conc.	Metoprol	ol Succinate
µg/ml	Absorbance at 205nm	Sensitivity (µg/cm3/Au)	µg/ml	Absorbance at 275nm	Sensitivity (µg/cm3/Au)
3	0.1104	0.0271	20	0.0897	0.2229
6	0.2393	0.0250	40	0.2284	0.1751
9	0.3467	0.0259	60	0.3181	0.1886
12	0.4414	0.0271	80	0.4160	0.1923
15	0.5651	0.0212	100	0.5414	0.1847
18	0.6510	0.0276	120	0.6405	0.1873
21	0.7759	0.0270	140	0.7388	0.1894
24	0.8873	0.0270	160	0.8320	0.1923
27	0.9987	0.0270	180	0.9713	0.1853
30	1.0934	0.0274	200	1.0711	0.1867
	Mean	0.02623		Mean	0.1722

Table 1: Sensitivity Data of Ramipril and Metoprolol Succinate

3.3.2 Linearity and Range

Ramipril standard stock solution: Accurately weighed 100mg of Ramipril was transferred into clean, dry 100ml volumetric flask and dissolved with sufficient volume of methanol. The volume was made up to 100ml with methanol to get concentration of 1000µg/ml (stock A). Further 10ml was withdrawn from stock A in 100ml volumetric flask and dissolved with sufficient volume of methanol. The volume was made up to 100µg/ml (stock B).

Working standard solution: Aliquots from standard solution were withdrawn in the volumes of 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7 and 3.0ml and transferred into different 10ml volumetric flasks. The volumes were made up with methanol to get concentrations ranging from 3, 6, 9, 12, 15, 18, 21, 24, 27 and 30µg/ml respectively.

Metoprolol Succinate standard stock solution: Accurately weighed 100mg of Metoprolol Succinate was transferred into clean, dry 100ml volumetric flask and dissolved with sufficient volume of methanol. The volume was made up to 100ml with methanol to get concentration of 1000µg/ml.

Working standard solution: Aliquots from standard solution were withdrawn in the volumes of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0ml and transferred into different 10ml volumetric flasks. The volumes were made up with methanol to get concentrations ranging from 20, 40, 60, 80, 100, 120, 140, 160,180 and 200µg/ml respectively.

Determination: Five replicates per concentration were studied. Absorbance of working standard solutions of Metoprolol Succinate and Ramipril were taken at 205nm and 275nm for zero order derivative and 274nm and 206nm for first order derivative respectively.

Volume of stock solution (ml)	Volume adjusted (ml)	Concentration µg/ml	Absorbance at 205nm	Absorbance at 275nm
0.3	10	3	0.1104	0.0007
0.6	10	6	0.2393	0.0017
0.9	10	9	0.3467	0.0037
1.2	10	12	0.4414	0.0056
1.5	10	15	0.5651	0.0077
1.8	10	18	0.6510	0.0096
2.1	10	21	0.7759	0.0117
2.4	10	24	0.8873	0.0138
2.7	10	27	0.9987	0.0158
3.0	10	30	1.0934	0.0179

Table 2: Linearity Range Data of Ramipril for zero order derivative

Fig 7: Linearity Range Graph of RAM at 205nm

Fig 8: Linearity Range Graph of RAM at 275nm

	Table 3	B: Linearit	ty Rang	e Data o	of Me	toprolol Suc	cinate f	or zero o	der derivative	
1	/ 1\			1 / 1			1 1			

Volume of stock solution (ml)	Volume adjusted (ml)	Concentration µg/ml	Absorbance at 205nm	Absorbance at 275nm
20	10	20	0.8156	0.0897
40	10	40	0.9866	0.2284
60	10	60	1.1576	0.3181
80	10	80	1.3286	0.4160
100	10	100	1.4996	0.5414
120	10	120	1.7335	0.6405
140	10	140	1.9012	0.7388
160	10	160	1.971	0.8320
180	10	180	2.141	0.9713
200	10	200	2.312	1.0711

Fig 9: Linearity Range Graph of METO at 205nm

Fig 10: Linearity Range Graph of METO at 275nm

Parameters	Rami	ipril	Metoprolo	Acceptance Criteria	
	205nm	275nm	205nm	275nm	
Linearity range (µg/ml)	3-30µg/ml	3-30µg/ml	20-200µg/ml	20-200µg/ml	-
Regression equation	0.0365x +0.0085	0.0007x -0.002	0.0084x +0.6658	0.0054x -0.0043	-
Correlation coefficient	0.9994	0.9974	0.995	0.9986	0.99
Intercept	0.0365x	0.0007x	0.0084x	0.0054x	-
Slope	0.0085	-0.002	0.6658	-0.0043	-

Table 4: Linearity	y report	of Ramipril	and Meto	prolol Succinate
--------------------	----------	-------------	----------	------------------

Table 5: Sample Analysis Data of Ramipril and Metoprolol Succinate

Stackwal	Concentration obtained(µg/ml)		Amount of drug in tablet		Amount obtained in %	
SLOCK VOI.	RAM	METO	RAM	METO	RAM	METO
1.0	2.47	24.97	2.47	24.97	98.8	99.88
1.5	4.96	39.81	2.47	24.97	98.8	99.88
2.0	7.42	54.45	2.45	24.97	98	99.88
2.5	9.93	69.43	2.44	24.96	97.6	99.8
3.0	12.55	84.38	2.47	24.95	98.8	99.85
Avg.			2.46	24.96	98.4	99.85

3.3.3 Accuracy (Recovery Study)

The accuracy of an analytical procedure expresses the closeness of agreement between the value which is accepted either as a conventional true value or an accepted reference value and the value found. The absorbances of resulting solutions were recorded at wavelengths 205nm and 275nm.

	Sample conc. (µg/ml) Total Conc. (µg/ml)		Amount of std. r	ecovered (µg/ml)	% Recovery of Standard			
Level (%)	RAM	METO	RAM	METO	RAM	METO	RAM	METO
80%	2.97	24.91	4.91	39.79	1.94	14.88	99	99.64
100%	2.94	24.95	5.74	49.73	2.8	24.78	98	99.8
120%	2.92	24.93	6.44	50.63	3.52	25.7	97.33	99.72

3.3.4 Precision

The precision of an analytical procedure expresses the closeness of agreement (degree of scatter) between a series of measurements obtained from multiple sampling of the same homogeneous sample under the prescribed conditions. Precision may be considered at three levels: repeatability, intermediate precision, and reproducibility. The absorbance of six determinations of working solution was recorded at wavelengths 205nm and 275nm. The %RSD was calculated for the absorbance of replicate.

Table 7: System Pr	ecision Data of Ramipril ar	d Metoprolol Succinate

Replicates	Absorbance (A1) 205nm	Absorbance (A2) 275nm
1	0.7102	0.0896
2	0.7030	0.0896
3	0.7206	0.0897
4	0.6990	0.0899
5	0.7214	0.0896
6	0.7215	0.0896
Mean	0.7126	0.0896
Standard deviation	0.0089	0.0001
% RSD	1.248	0.1116

Poplicator	Concentration in (µg/ml)			
Replicates	Ramipril	Metoprolol Succinate		
1	2.95	24.91		
2	2.98	24.93		
3	2.91	24.93		
4	2.96	24.98		
5	2.98	24.97		
6	2.95	24.97		
Mean	2.95	24.94		
Standard deviation	0.0264	0.03		
%RSD	0.8813	0.1202		

Table 8: Method Precision Data of Ramipril and Metoprolol Succinate

Poplicator	Data intorval	Concentration in µg/ml		
Replicates	Date interval	Ramipril	Metoprolol Succinate	
1	04-10-17, 10am	2.99	24.99	
2	04-10-17, 3pm	2.95	24.93	
3	05-10-17, 10am	2.93	24.97	
4	05-10-17, 3pm	2.97	24.97	
5	06-10-17, 10am	2.95	24.96	
6	06-10-17, 3pm	2.95	24.92	
Mean		2.95	24.95	
Standard deviation		0.021	0.027	
%RSD		0.711	0.108	

Table 10: Intra-day Precision Data of Metoprolol Succinate and Ramipril

Domisetes	Time interval	Concentration in µg/ml		
Replicates		Ramipril	Metoprolol Succinate	
1	10:00AM	2.93	24.91	
2	11:00AM	2.95	24.93	
3	12:00 PM	2.94	24.96	
4	1:00 PM	2.99	24.93	
5	2:00 PM	2.96	24.92	
6	3:00 PM	2.93	24.96	
Mean		2.95	24.93	
Standard deviation		0.022	0.021	
%RSD		0.745	0.084	

3.3.5 Limit of Detection (LOD)

Limit of detection was calculated by using formula

DL = 3.3 σ / S

Where, σ – Standard deviation of response (Y intercept)

S – Slope of calibration curve.

Table 11: Report of LOD of Ramipril and Metoprolol Succinate

Drug	LOD (µg/ml)		
Diug	Visualization		
Ramipril	1.54		
Metoprolol Succinate	51.59		

3.3.6 Limit of Quantitation (LOQ)

Limit of quantitation was calculated by using formula.

$DL = 10 \sigma / S$

Where, σ – Standard deviation of response (Y intercept)

S – Slope of calibration curve.

Table 12: Report of LOQ of Ramipril and Metoprolol Succinate

Drug	LOD (µg/ml)		
	Visualization		
Ramipril	4.683		
Metoprolol Succinate	156.3		

3.3.7 Robustness

Robustness was determined by changing the wavelength.

Table 13: Change of Wavelength used for analysis of RAMI and METO

RAMI	MI Wavelength (nm)			METO	Wavelength (nm)		
µg/ml	203	205	207	μg/ml	273	275	277
21	0.8012	0.7011	0.6312	20	0.0898	0.0896	0.0894
21	0.8122	0.7121	0.6302	20	0.0897	0.0897	0.0894
21	0.8140	0.7139	0.6321	20	0.0899	0.0896	0.0895
21	0.8010	0.7009	0.6344	20	0.0897	0.0896	0.0894
21	0.8211	0.7210	0.6332	20	0.0897	0.0898	0.0896
21	0.8130	0.7129	0.6313	20	0.0897	0.0896	0.0894
Mean	0.8104	0.7103	0.6320	Mean	0.0897	0.0896	0.0894
S.D.	0.0111	0.007	0.001	S.D.	0.0001	0.0001	0.0001
%RSD	1.36	0.98	0.15	%RSD	0.1114	0.1116	0.1118

4. CONCLUSION

This method (zero order derivative method) found to be economic, simple, and accurate. Beer-Lambert's Law was obeyed in the concentration range of $3-30\mu$ g/ml and $20-200\mu$ g/ml for Ramipril and Metoprolol Succinate respectively, with co-efficient of correlation, (R²) = 0.9994 and (R²) = 0.9986 for RAM and METO, respectively. Straight line equations were obtained from these calibration curves. From the examination of the zero derivative spectra of Ramipril and Metoprolol Succinate, 205nm (λ 1) and 275nm (λ 2) were selected as working wavelengths for the zero-order derivative spectroscopy. The method was validated as per ICH and USP guidelines. In this method the solvent used will be easily available and was also economic for estimation of tablet dosage form.

5. ACKNOWLEDGEMENTS

The authors are very thankful to Srinivas College of pharmacy, Mangalore, Karnataka, India for providing necessary facilities. The authors are also thankful to the Principle, Ramakrishna Shabaraya Srinivas College of Pharmacy, Mangalore, Karnataka, India for providing the required facilities to carry out this research work.

REFERENCES

1. Shital Patel, Drashti Patel. Simultaneous determination of Metoprolol Succinate and Chlorthalidone by UV spectrophotometric method. Pharmagene. 2013;1(3):39-43.

International Journal of Chemical & Pharmaceutical AnalysisOctober-December 2018

- Campbell, D. J., Kladis, A. and Duncan, A. M. 1993. Nephrectomy, converting enzyme inhibition and angiotensin peptides. Hypertension 22: 513-522.
- Nawrocki, J. W., Weiss, S. R., Davison, M. H., Sprecher, D. L., Schwarts, S. L., Lupien, P. J., Jones, P. H., Habert, H. E. and Black, D. M. 1995. Reduction of LDL cholesterol by 25% to 60% in patients with primary hypercholesterolemia by atorvastatin, a new HMG-CoA reductase inhibitor. Arterioscler. Thromb. Vasc. Biol. 15: 678-682.
- 4. Lea, A. P. and Tavish, D. M. 1997. Atorvastatin: a review of its pharmacology and therapeutic potential in the management of hyperlipidemias. Drugs 53: 828-847.
- 5. Chiong, J. R. and Miller, A. B. 2002. Renin-angiotensin system antagonism and lipid lowering therapy in cardiovascular risk management. J. Renin Angiotensin Aldosterone Syst. 3: 96-102.
- Patel V., Pandya S. Analytical Method Development and Validation for Simultaneous Estimation of Metoprolol Succinate And Ramipril In Tablet Dosage Form By Rp-Hplc, International Journal Of Pharmaceutical Research And Bio-Science, 2017; 6(3): 41-50.
- The European Pharmacopoeia, 7Th Edn: Published by the European Directorate for the quality of Medicnes and health care, 2011, Vol. 2, pp 2495-2496.
- 8. Martindale, Royal Pharmaceutical society of Great Britain, 34th Edn, The Pharnaceutical press, London, 2005, 966.
- 9. Lippincott Williams and Wilkins, Foye's principles of medicinal chemistry, 5th edition, 351-west Camden street, 2007, 552.
- 10. Brunton L, Parker K and Buxton L, Goodman and Gillman's manual of pharmacology and therapeutics, 3rd Edition; the Mcgraw-Hill compnies publication, New York,2007, pp 856.
- 11. Remington, The Science and Practice of Pharmacy, 21st edn, Vol. 2, pp 1366.
- 12. The Merck Index. 13th Edition, Merck and Co., Inc.;1996:1096.
- 13. Indian Pharmacopoeia. Government of India, Ministry of Health & Family Welfare. Published by Indian Pharmacopoeia Commission. 2014; 3:2213-15.
- 14. ICH, text on Validation of Analytical Procedures, Q2A.
- 15. ICH Validation of Analytical Procedures, Methodology Q2B.