

SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL EVALUATION OF NOVEL 1,3,4-OXADIAZOLE DERIVATIVES

Neha G. Solanki^{*} and M. K. Thakor¹

¹Municipal Arts and Urban Bank Science College, Mehsana (Guj.) India

*Corresponding Author: Email: nehasl9434@gmail.com

Received: 14 June 2016 / Revised: 12 September 2016 / Accepted: 20 September 2016 / Available online : 30 September 2016

ABSTRACT

The title heterocyclic compounds (3a-h) namely 3-((4-(3,5-diphenyl-3,3a-dihydrothiazolo[4,5-c]isoxazol-6(5H)-yl)phenyl)sulfonyl)-5methyl-1,3,4-oxadiazole-2(3H)-thione were prepared by treatment of hydroxyl amine with phenylidine derivative (2a-h) containing oxadiazolo-sulfonyl-thiazolidinones nucleus. All the compounds were studied for spectral studies and monitored for antimicrobial activity.

Keywords – 1,3,4-Oxadiazole, Spectral studies, Thiazolidinones, Hydroxyl amine, Antimicrobial activities.

1. INTRODUCTION

Oxadiazole derivatives exhibit an broad spectrum of biological activities as well as pharmaceutical applications *viz.* antibacterial, antifungal, anti-inflammatory, antitubercular, anti-HIV, anticancer and anticonvulsant activities etc^{1-6} . Recently, thiazolidinones containing other heterocyclic systems were also reported to possess useful biological activities⁷⁻¹⁰. Compounds containing oxadiazole and thizolidinone nucleus were reported to number of biological activities like, such as antibacterial, antifungal and anti-inflammatory activity¹¹⁻¹³. Hence, it was thought of interest to prepared novel oxadiazolo-sulfonyl-thiazolidinones moieties which may enhance the drug activity of compounds. In continuation of our previous work¹⁴, the present article discuss about synthesizes and characterization of 3-((4-(3,5-diphenyl-3,3a-dihydrothiazolo[4,5-c]isoxazol-6(5H)-yl)phenyl)sulfonyl)-5-methyl-1,3,4-oxadiazole-2(3H)-thione (3a-h) derivatives. Also the antimicrobial evaluation of all synthesized compounds was carried out. The synthetic approach is shown in**Scheme-1**.

2. EXPERIMENTAL

3-(4-(5-methyl-2-thioxo-1,3,4-oxadiazole-3(2H)-ylsulfonyl)phenyl)-2-phenyl thiazolidin-4-one (1) was prepared according to method reported in literature ¹⁴. All other chemicals used were of laboratory grade. The melting point was determined by open capillary tube method.

2.1 Preparation of 3-(arylmethylene)-3-(4-(5-methyl-2-thioxo-1,3,4-oxadiazole-3(2H)-yl sulfonyl) phenyl)-2-phenyl thiazolidin-4-one (2a-h):

A mixture of 3-(4-(5-methyl-2-thioxo-1,3,4-oxadiazole-3(2H)-ylsulfonyl)phenyl)-2-phenylthiazolidin-4-one **(1)**, (0.01mole) with different aromatic aldehydes in ethanol (30ml) was refluxed on a water bath for 5-6 hrs. The solid mass separated out was filtered, washed with water and dried to give the desired compounds in range between 67-82% yields. The yields, melting points and elemental data of these compounds are given in **Table-1**.

2.2 Preparation of 3-((4-(3,5-diphenyl-3,3a-dihydrothiazolo[4,5-c]isoxazol-6(5H)-yl) phenyl) sulfonyl)-5-methyl-1,3,4-oxadiazole-2(3H)-thione (3a-h):

The reaction mixture of 3-(aryImethylene)-3-(4-(5-methyl-2-thioxo-1,3,4-oxadiazole-3(2H)-ylsulfonyl)phenyl)-2-phenylthiazolidin-4-one (2a-h) (0.01 mol) in ethanol (50 mL) containing hydroxyl amine (0.01 mol) was reflux on a steam-bath for 4-5 hours. Ethanol was removed by distillation under reduced pressure. The product was filtered, washed with water and recrystallized from ethanol to get the desired compound 3-((4-(3,5-diphenyl-3,3a-dihydrothiazolo[4,5-c]isoxazol-6(5H)-yl)phenyl)sulfonyl)-5-methyl-1,3,4-oxadiazole-2(3H)-thione (3a-h), which were obtained in range between 62-73% yield. The yields, melting points and elemental data of these compounds are given in Table-2.

3. BIOLOGICAL SCREENING

3.1 Antibacterial activities

The antibacterial activities of all the compounds were studied against gram-positive bacteria and gram-negative bacteria at a concentration of 50µg/ml by agar cup plate method. A methanol system was used as control in this method. Similar conditions using tetracycline as a control was used standard for comparison. The area of inhibition of zone measured in cm. Compounds **3d** was found more toxic for microbes. Other compounds found to be less or moderate active than tetracycline **Table-3**.

3.2 Antifungal Activities

The fungicidal activity of all the compounds was studied at 1000 ppm concentration in vitro. Plant pathogenic organisms used were *Candida albicans, Aspergillus niger and Aspergillus clavatus, and Fusarium oxyporium*. The antifungal activities of all the compounds **(3a-h)** were measured on each of these plant pathogenic strains on a potato dextrose agar (PDA) medium. Such a PDA medium contained potato 200g, dextrose 20g, agar 20g and water 1c. Five days old cultures were employed. The compounds to be tested were suspended (1000ppm) in a PDA medium and autoclaved at 120° C for 15 min. at 15 atm. pressure. These media were poured into sterile Petri plates and the organisms were inoculated after cooling the Petri plates. The percentage inhibition for fungi was calculated after five days using the formula given below:

Percentage of inhibition = 100(X-Y) / X

Where, X = Area of colony in control plate

Y = Area of colony in test plate

The fungicidal activity displayed by various compounds (3a-h) is shown in Table-4.

4. RESULTS AND DISCUSSION

3-(arylmethylene)-3-(4-(5-methyl-2-thioxo-1,3,4-oxadiazole-3(2H)-ylsulfonyl) phenyl)-2-phenylthiazolidin-4-one (2a-h) derivatives derived by condensation of 3-(4-(5-methyl-2-thioxo-1,3,4-oxadiazole-3(2H)-ylsulfonyl)phenyl)-2-phenylthiazolidin-4-one (1) with different substituted aromatic aldehydes. The structures assigned to intermediate were supported by the elemental analysis and IR spectra showing an absorption bands at 3415, 3418 (OH), 3035-3070 cm⁻¹ (C-H, of Ar), 2950,1370 cm⁻¹ (-CH₃), 2824 cm⁻¹ (-OCH₃), 1685-

International Journal of Chemical & Pharmaceutical AnalysisJuly - September 2016

1695 cm⁻¹ (C=O of thiazolidinone ring), 1635-1650 cm⁻¹(C=N), 1552-1568 cm⁻¹ (C=C), 1168 cm⁻¹ (C=S), 1078 cm⁻¹ (C-Cl), 1051 cm⁻¹ (C-Br), ~720 cm⁻¹ (C-S-C of thiazolidinone ring). ¹H NMR : 7.30-8.25 (m,15H,Ar-H), 5.7 (s,1H,CH), 2.18 (s,3H,CH₃), 2b; 5.25 (s,1H,OH), 2c: 5.28 (s,1H,OH), 2d; 3.78 (s,1H,OCH₃). The C, H, N, S analysis data of all compounds from **Table-1** equivalent with their predicted structures.

3-((4-(3,5-diphenyl-3,3a-dihydrothiazolo[4,5-c]isoxazol-6(5H)-yl)phenyl)sulfonyl)-5-methyl-1,3,4-oxadiazole-2(3H)-thione **(3a-h)** was prepared by reaction of 3-(arylmethylene)-3-(4-(5-methyl-2-thioxo-1,3,4-oxadiazole-3(2H)-ylsulfonyl)phenyl)-2-phenylthiazolidin-4-one **(2a-h)** with hydroxyl amine. The structures of **(3a-h)** were confirmed by elemental analysis and IR spectra showing an absorption band at 3415, 3418 (OH), 3035-3070 cm⁻¹ (C-H, of Ar), 2950,1370 cm⁻¹ (-CH₃), 2824 cm⁻¹ (-OCH₃), 1635-1650 cm⁻¹(C=N), 1168 cm⁻¹ (C=S), 1078 cm⁻¹ (C-Cl), 1051 cm⁻¹ (C-Br), ~720 cm⁻¹ (C-S-C of thiazolidinone ring). The thiazodinone carbonyl missing in 3a-h derivatives support the structure of desired derivatives. ¹H NMR : 7.21-8.10 (m,14H,Ar-H), 5.7 (s,1H,CH), 4.8-5.2 (s,2H,CH of isoxazole), 2.15 (s,3H,CH₃), 2b; 5.27 (s,1H,OH), 2c: 5.32 (s,1H,OH), 2d; 3.81 (s,1H,OCH₃). The C, H, N, S analysis data of all compounds from **Table-2** equivalent with their predicted structures.

The examination of elemental analytical data reveals that the elemental contents are consistence with the predicted structure shown in **Scheme-1**. The IR data along with NMR spectrum also direct for assignment of the predicted structure. The Compound **3d** shows good antibacterial and antifungal activity.

Scheme-1

	Fun. Group		М.Р. ⁰с	Elemental Analysis							
Compd.		Yield		%C		% H		%N		%S	
			C	Found	Calc.	Found	Calc.	Found	Calc.	Found	Calc.
2a	C ₆ H ₅ (521)	75	218	57.56	57.5	3.67	3.6	8.06	8.0	18.14	18.1
2b	2-OH-C ₆ H ₅ (537)	78	210	55.85	55.8	3.56	3.5	7.82	7.8	17.89	17.8
2c	4-OH-C ₆ H ₅ (537)	82	212	55.85	55.8	3.56	3.5	7.82	7.8	17.89	17.8
2d	4-OCH ₃ -C ₆ H ₅ (551)	72	205	56.61	56.5	3.84	3.8	7.62	7.6	17.44	17.4
2e	2-Cl-C ₆ H ₅ (556)	70	221	54.00	53.9	3.26	3.2	7.56	7.5	17.30	17.2
2f	4-Cl-C ₆ H ₅ (556)	71	219	54.00	54.0	3.26	3.2	7.56	7.5	17.30	17.2
2g	4-Br-C ₆ H ₅ (598)	67	225	50.00	49.9	3.02	3.0	7.00	7.0	16.02	15.9
2h	4-CH ₃ -C ₆ H ₅ (535)	72	214	58.30	58.2	3.95	3.9	7.84	7.8	17.96	17.9
* Uncorrected											

Table 1 : Analytical Data and Elemental Analysis of Compounds (2a-h)

Table 2 : Physical properties and Elemental Analysis of Compounds (3a-h)

	Fun. Group				E	lemental	Analys	is				
Compd.		Yield	⁰ C	%	%C		% H		%N		%S	
			C	Found	Calc.	Found	Calc.	Found	Calc.	Found	Calc.	
3a	C ₆ H₅ (536)	70	224	55.95	55.9	3.76	3.7	10.44	10.4	17.93	17.9	
3b	2-OH-C ₆ H ₅ (552)	72	215	54.37	54.3	3.65	3.6	10.14	10.1	17.41	17.4	
3c	4-OH-C ₆ H ₅ (552)	73	217	54.37	54.3	3.65	3.6	10.14	10.1	17.41	17.3	
3d	4-OCH ₃ -C ₆ H ₅ (566)	69	212	55.11	55.1	3.91	3.8	9.89	9.8	16.98	16.9	
3e	2-Cl-C ₆ H ₅ (571)	68	228	52.58	52.5	3.35	3.3	9.81	9.8	16.84	16.8	
3f	4-Cl-C ₆ H ₅ (571)	66	224	52.58	52.5	3.35	3.3	9.81	9.8	16.84	16.8	
3g	4-Br-C ₆ H₅ (615)	63	231	48.78	48.7	3.11	3.1	9.10	9.0	15.63	15.6	
3h	4-CH ₃ -C ₆ H ₅ (550)	69	219	56.71	56.7	4.03	4.0	10.17	10.1	17.47	17.4	
* Uncorrected												

 Table 3 : Antibacterial Activity of Compounds (3a-h)

Commonweda	G	iram +Ve	Gram –Ve			
Compounds	Bacillus subtilis	Staphylococcus aureus	Escherichia Coli Salmonella ty			
3a	54	58	63	55		
3b	62	61	67	64		
3c	57	59	61	57		
3d	73	75	79	81		
3e	52	54	54	56		
3f	54	58	55	56		
3g	57	52	53	58		
3h	59	55	59	60		
Tetracycline	67	61	78	80		

 Table 4 : Antifungal Activity of Compounds (3a-h)

Zone of Inhibition at 1000 ppm (%)							
Compounds	Candida albicans	Aspergillus Niger	Aspergillus clavatus	Fusarium oxyporium			
3a	65	63	75	60			
3b	64	67	65	62			
3c	68	67	72	65			
3d	76	78	72	75			
Зе	67	65	57	58			
3f	68	67	60	60			
3g	67	63	69	62			
3h	65	63	75	60			

5. CONCLUSION

The study of newly synthesized compounds were show moderate antibacterial and antifungal activities. 4-Thiazolidinone derivatives, was synthesized and characterized by different analytical techniques for their structure elucidation. Antibacterial and antifungal activities of these compounds indicated that compounds were found to be showing moderate activity against some bacteria compared to standard antibiotic drug.

REFERENCES

- 1. K. A. Kumar, P. Jayaroopa, G. V. Kumar, Int. J. ChemTech. Res., 2012, 4, 1782.
- 2. H. Khalilullah, M. J. Ahsan, Md. Hedaitullah, S. Khan, B Ahmad, Mini Rev. Med. Chem., 2012, 12, 789.
- 3. P. Dholaria, K. Parikh, D. Joshi, Int. J. Chemtech App., 2015, 4, 1.
- 4. T. Chandra, N. Garg, S. Lata, K. K. Saxena, A. Kumar, Euro. J. Med. Chem., 2010, 45, 1772.
- 5. P. J. Shah, Oct. J. Env. Res., 2013, 1, 205.
- 6. B. N. Sudha, C. Sridhar, V. G. Sastry, Y. S. R. Reddy, O. Sreevidya, S. Lavanya,
- 7. V.A. Jyothi, V. Nagesh, S. Sen, R. Chakraborty, Ind. J. Chem.-B, 2014, 52B, 422.
- 8. D. Havrylyuk, B. Zimenkovsky, O. Vasylenko, C. W. Day, D. F. Smee, P. Grellier,
- 9. R. Lesyk, Euro. J. Med. Chem., 2013, 66, 228.
- 10. G. N. Masoud, A. M. Youssef, M. M. Abdel Khalek, A. E. Abdel Wahab,
- 11. M. Labouta, A. A. B. Hazzaa, Euro. J. Med. Chem., 2013, 22, 707.
- 12. K. S. Sharath Kumar, A. Hanumappa, M. Vetrivel, M. Hegde, Y. R. Girish, T. R.
- 13. Byregowda, S. Rao, S. C. Raghavan, K. S. Rangappa, *Bioorg. Med. Chem.*, 2015, 25, 3616.
- 14. V. B. Arunlal, K. Vandana, C. R. Biju, Int. J. Curr. Pharm. Res., 2015, 7, 1.
- 15. S. G. Kucukguzel, E. E. Oruc, S. Rollas, F. Sahin, A. Ozbek, Euro. J. Med. Chem., 2002, 37, 197.
- 16. Mohd. Amir, M. S. Y. Khan, M. S. Zaman, Ind. J. Chem., 2004, 43B, 2189.
- 17. S. Muralikrishna, P. Raveendrareddy, L. K. Ravindranath, S. Harikrishna, P. J. Rao, Int. J. Chemtech. Res., 2014, 6, 183.
- 18. S.D. Prajapati, M.K. Thakor, J. Curr. Chem. Pharm. Sc.: 2013, 3(3), 176-180